Porphyrin FRET acceptors for apoptosis induction and monitoring.
نویسندگان
چکیده
Photodynamic therapy (PDT) stands to benefit from improved approaches to real-time treatment monitoring. One method is to use activatable photosensitizers that can both induce cell death (via singlet oxygen) and monitor it (via caspase detection). Here, we report porphyrins as caspase-responsive Forster Resonance Energy Transfer (FRET) acceptors to organic fluorophore donors. Compared to porphyrin FRET donor constructs, singlet oxygen generation was unquenched prior to caspase activation, resulting in more efficient photosensitization in HT-29 cancer cells. The donor 5-Carboxy-X-Rhodamine (Rox) formed a robust FRET pair with the pyropheophorbide (Pyro) acceptor. The large dynamic range of the construct enabled ratiometric imaging (with Rox excitation) of caspase activation in live, single cells following induction of cell death (with Pyro excitation) using a single agent. Quantitative, unquenched activatable photosensitizers (QUaPS) hold potential for new feedback-oriented PDT approaches.
منابع مشابه
Optical Approaches for Drug Screening Based Light-Harvesting Conjugated Polyelectrolyte
Multifunctional materials that can simultaneously provide therapeutic action and image the ensuing results provide new strategies for treating various diseases. Here, we show that a cationic conjugated polyelectrolyte with a molecular design containing a polythiophene-porphyrin dyad (PTP) has efficient anticancer and antifungal activities. Upon photoexcitation, energy is efficiently transferred...
متن کاملThe Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors
Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET c...
متن کاملAnomalous Surplus Energy Transfer Observed with Multiple FRET Acceptors
BACKGROUND Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRE...
متن کاملQuantum Dots as Acceptors in FRET-Assays Containing Serum
Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive ...
متن کاملTime-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors
CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 46 شماره
صفحات -
تاریخ انتشار 2011